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The Development of the Green’s Function
for the Boltzmann Equation
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We review the particle-like and wave-like property of the Boltzmann equation. This
property leads to a sequence of developments on the mathematical theory of the Green’s
function for the Boltzmann equation.
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1. INTRODUCTION

The Boltzmannn equation is a fundamental equation for rarefied gases and thermo-
non-equilibrium flows. It models the motion of gas flows in terms of a density
function F(x, t, ξ ) of particle velocity ξ located at (x, t). The equation for a hard
sphere collision model is an integral-differential equation

∂t F + ξ · ∇xF = Q(F),

Q(F)(ξ ) ≡
∫

ξ∗ ∈ R
3, ω ∈ S2

(ξ∗ − ξ ) · ω > 0

(−F(ξ )F(ξ∗) + F(ξ ′)F(ξ ′
∗)) |(ξ − ξ∗) · ω|dωdξ∗,

{
ξ ′ ≡ ξ − [(ξ − ξ∗) · ω]ω,

ξ ′
∗ ≡ ξ∗ + [(ξ − ξ∗) · ω]ω.

This equation has many industrial applications particularly in the areas
related to a condensation-vaporization problem, which is an initial boundary

1 Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, SAR, China;
e-mail: mashyu@cityu.edu.hk

301

0022-4715/06/0800-0301/0 C© 2006 Springer Science+Business Media, Inc.



302 Yu

value problem for the Boltzmann equation. This problem has been extensively
studied through numerical computations, asymptotic expansions, and mathemati-
cal analysis.

Rigorous mathematical analyses were not mature enough to study any non-
linear problems related to the condensation-vaporization problem until the de-
velopment of the pointwise estimates of the Green’s function G(x, t ; y, s) for an
initial boundary value problem.(7) Before the development of the Green’s func-
tion, there was a classical L2 energy method for this problem. The energy method
is sufficient for a linearized problem but not for a full nonlinear one. This is
due to the fact that the energy method requires a smoothness condition in the
solution in order to close nonlinearity, but such a required condition generically
does not hold at a physical boundary as the numerical solutions indicate.(10)

The Green’s function approach doesn’t require any regularity property of the
solution, since the full nonlinear Boltzmann equation is a semi-linear partial
differential equation so that one can simply use the pointwise structure of the
Green’s function and the Picard’s iteration to obtain the solution and its pointwise
structure.

The study of the Green’s function for the Boltzmann equation was first pro-
posed by Cercignani in Ref. 1 for a stationary problem more than twenty years
ago. The analysis of the Green’s function for an initial boundary value problem
requires the basic informations of the Green’s function for an initial value prob-
lem. To study the initial value problem, one needs to determine carefully the
basic physical characteristics of the solution.(5,6) From the consideration related
to thermo-equilibrium state, one separates the space-time into two regions: a high
Mach number region and a finite Mach number region. From the consideration of
solution patterns, one introduces two different decompositions: a long wave-short
wave decomposition and a particle-wave decomposition. Those four decomposi-
tions are connected by the mixture lemma to result in the Green’s function for the
initial value problem.

In this paper, we will outline the development of the Green’s functions in
Ref. 5–7.

2. PRELIMINARIES

The Boltzmann equation,

∂t F + ξ · ∇xF = Q(F) where F(x, t, ξ ) ∈ R, (x, t, ξ ) ∈ R
3 × R

+ × R
3, (1)

consists of two main characteristics: a microscopic particle nature due to ∂t +
ξ · ∇x and a macroscopic nature in particle velocity due to the nonlinear binary
collision operator Q.
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For the hard sphere collision model, the collision operator Q is

Q(g)(ξ ) ≡ B(g, g)(ξ ),

B(g, h)(ξ ) ≡
∫

ξ∗ ∈ R
3, ω ∈ S2

(ξ∗ − ξ ) · ω > 0

(−g(ξ )h(ξ∗) − h(ξ )g(ξ∗) + g(ξ ′)h(ξ ′
∗) + h(ξ ′)g(ξ ′

∗)
)

2

·|(ξ − ξ∗) · ω|dωdξ∗,{
ξ ′ ≡ ξ − [(ξ − ξ∗) · ω]ω,

ξ ′
∗ ≡ ξ∗ + [(ξ − ξ∗) · ω]ω.

(2)

The equilibrium states are defined by Q−1(0):


M ≡ M[1,0,1], (The absolute Maxwellian state.)

M[ρ,u,θ] ≡ ρ e− |ξ−u|2
2θ√

2πθ
. (A general Maxwellian state.)

Here the state (ρ, u, θ ) ∈ R
+ × R

3 × R
+ represents bulk density, velocity, and

temperature of a thermo-equilibrium state M[ρ,u,θ].

Denote the linearized collision operator around an absolute Maxwellian M
by L , which is defined by

Lf ≡ 2M−1/2B(M, M1/2f);

and L can be explicitly written as Ref. 2:


Lg(ξ ) = −ν(ξ )g(ξ ) +
∫

R
3

k(ξ, ξ∗)g(ξ∗)dξ∗,

ν(ξ ) ≡ 1√
2π

(
2e− |ξ |2

2 + 2

(
|ξ | + 1

|ξ |
)∫ |ξ |

0
e− u2

2 du

)
,

k(ξ, ξ∗) = 2√
2π |ξ − ξ∗|

exp

(
− (|ξ |2 − |ξ∗|2)2

8|ξ − ξ∗|2 − |ξ − ξ∗|2
8

)

−|ξ − ξ∗|
2

exp

(
− (|ξ |2 + |ξ∗|2)

4

)
,

ν(ξ ) = O(1)(1 + |ξ |) > 0.

(3)

The nonlinear problem Eq. (1) can be written as a perturbation problem as follows

∂t f + ξ · ∇x f − Lf = �(f) where �(f) ≡ M−1/2 Q(M−1/2f). (4)
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Remark 1. The variable f = M−1/2F was first introduced by Ref. 4.

The Green’s function G(x, t ; y, s; ξ, ξ∗) for the linear part of Eq. (4) can be
defined by G(x, t ; y, s; ξ, ξ∗) ≡ g(x − y, t − s, ξ ), which is the solution of the
initial value problem: {

∂t g + ξ · ∇xg = Lg,

g(x, 0) = δ3(x)δ3(ξ − ξ∗).
(5)

The solution of a general initial value problem{
∂th + ξ · ∇xh = Lh,

h(x, 0, ξ ) = h0(x, ξ )
(6)

can be represented:

h(x, t) =
∫

R
3
G(x, t ; y, 0)h0(y)dy =

∫
R

3
G(x − y, t)h0(y)dy, (7)

where G(x, t ; y, 0)h0(y) defined an L2
ξ (R3)-valued function:

G(x, t ; y, 0)h0(y)(ξ ) ≡
∫

R
3
G(x, t ; y, 0; ξ, ξ∗)h0(y, ξ∗)dξ∗,

G(x, t) ≡ G(x, t ; 0, 0).

The solution of Eq. (4) can be represented as

f(x, t) =
∫

R
3
G(x − y, t)f(y, 0)dy +

∫ t

0

∫
R

3
G(x − y, t − σ )�(f)(y, σ )dyds.

(8)

3. SPECTRUM AND LONG WAVE-SHORT WAVE DECOMPOSITION

It is natural to consider the Fourier transformation of the Green’s function.
From the Fourier transformations of Eq. (6) and Eq. (7), one has

Ĝ(η, t) = e(−iη·ξ+L)t , (9)

where

Ĝ(η, t) ≡
∫

R
3

e−iη·x
G(x, t)dx .

One applies inverse Fourier transformation to Ĝ(η, t), then one can obtain
the Green’s function G(x, t) formally as follows

G(x, t) =
∫

R
3

eix ·ηe(−iη·ξ+L)t dη. (10)
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Fig. 1. The diagram of the spectrum.

This leads to the spectrum decomposition of the operator −iη · ξ + L for any
fixed η ∈ R

3.(3,11) The spectrum σ (η) of the operator −iξ · η + L is analytic
when |η| � 1. The rest of the spectrum is completely contained in the half space
Re(z) < −κ0 for some κ0 > 0. The spectrum σ (η) is illustrated in Fig. 1 for all
η ∈ R

3.
Due to this spectrum property, one introduces the Long wave-Short wave

decomposition (L-S decomposition)(5):


G(x, t) ≡ GL (x, t) + GS(x, t),

GL (x, t) ≡
∫

|η|≤κ0/2
eix ·ηe(−iη·ξ+L)t dη,

GS(x, t) ≡
∫

|η|≥κ0/2
eix ·ηe(−iη·ξ+L)t dη;

(L-S)

and three semi-groups G
t , G

t
L , and G

t
S:



G
th(x) ≡

∫
R

3
G(x − y, t)h(y)dy,

G
t
Lh(x) ≡

∫
R

3
GL (x − y, t)h(y)dy,

G
t
Sh(x) ≡

∫
R

3
GS(x − y, t)h(y)dy.
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From the spectral properties illustrated in Fig. 1, one has that for any given k ∈ N

∥∥Gt

Lh
∥∥

H k
x (L2

ξ )
≤ O(1)‖h‖L2

x (L2
ξ ) for all t > 0,∥∥Gt

Sh
∥∥

L2
x (L2

ξ )
≤ O(1)e− κ0 t

2 ‖h‖L2
x (L2

ξ ) for all t > 0.
(11)

This and the Sobolev’s inequality yield∥∥Gt
Lh
∥∥

L∞
x (L2

ξ )
≤ O(1)‖h‖L2

x (L2
ξ ). (12)

4. PARTICLE HIERARCHY

Before considering Eq. (5), we consider a model problem for the Green’s
function(5):{

∂t f + ξ · ∇x f = Lf,

f(x, 0, ξ ) = f0(x, ξ ), f0 ≡ 0 for |x | ≥ 1, supx,ξ |f0(x, ξ )| ≤ 1.
(13)

Rewrite Eq. (13) as follows.{
∂t f + ξ · ∇x f + ν(ξ )f = Kf,

f|t=0 = f0,
(14)

where

Kf(x, t, ξ ) ≡
∫

R
3

k(ξ, ξ∗)f(x, t, ξ∗)dξ∗.

This is a hyperbolic equation. We denote the solution operator of the following
transport equation by S

t {
∂th + ξ · ∇xh + ν(ξ )h = 0,

h(x, 0) = h0.
(15)

The operator S
t can be expressed as follows{

S
th0(x, ξ ) = h0(x − ξ t)e−ν(ξ )t ,

Ŝ
t
(η, t) = e−ν(ξ )t−iξ ·ηt .

(16)

4.1. Essential Kinetic Waves

The integral kernel k(ξ, ξ∗) of the integral operator K contains a singularity
at |ξ − ξ∗| = 0. Regarding to this singularity, we introduce an essential kinetic
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equation to approximate the particle behavior of Eq. (14).{
∂tE + ξ · ∇xE + νE = K0E ,

E |t=0 = f0,
(17)

where


K0E (x, t, ξ ) ≡
∫

R
3

k(ξ, ξ∗)E (x, t, ξ∗)χ

( |ξ − ξ∗|
ε

)
dξ∗,

K1E ≡ KE − K0E ,

χ ∈ C∞
c (R), χ (τ ) = 1 for |τ | ≤ 1

2 , supp(χ ) ⊂ [−2, 2],

0 < ε � 1.

(18)

The operator K1 is smooth operator in ξ variable, since χ ( |ξ−ξ∗|
ε

)k(ξ, ξ∗) is a
smooth function.

Remark 2. The initial data f0 of Eq. (14) is not necessary smooth or continuous.

The existence of E (x, t) can be obtained by assuming ε � 1 in Eq. (18) and
by Picard’s iterations. The solution E (x, t) satisfies that

‖E ‖L2
x (L2

ξ ) ≤ O(1)e−α0t‖f0‖L2
x (L2

ξ ) for α0 > 0. (19)

Set

d1 ≡ f − E .

d1 satisfies {
∂td1 + ξ · ∇xd1 + ν(ξ )d1 = Kd1 + K1E ,

d1|t=0 ≡ 0.
(20)

Now, one observes the initial data of d1 is smooth up to any order, and the source
K1E is smooth in the ξ variable! This regularity property is crucial in the following
up development.

4.2. Mixture Lemma

By Picard’s iteration, one has

d1 = (1 + S
t ∗ K + S

t ∗ KS
t ∗ K + S

t ∗ KS
t ∗ KS

t ∗ K + · · ·)St ∗ K1E . (21)

Here, ∗ denotes a convolution operator in t variable.
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Remark 3. This sequence had been used to construct the existence of the oper-
ator e−iξ ·η+ν(ξ )t+Kt in Ref. 11.

Lemma 1. (Mixture Lemma, Ref. 5) For any given k ∈ N ∪ {0}, one has that

∥∥∂k
x S

t ∗ (KS
t ) ∗ (KS

t ) ∗ · · · ∗ (KS
t )︸ ︷︷ ︸

2k

g0

∥∥
L2

x (L2
ξ )

= O(1)(‖g0‖L2
x (L2

ξ ) + ‖∂k
ξ g0‖L2

x (L2
ξ )),

(22)
where O(1) depends on k but is independent of g0.

The proof of this lemma is based on a separation of the time domain into small
and large time scales. In the small time scale, one needs to use the characteristic
curve method to convert the x-derivative into the ξ -derivative. In the large time
scale, one can simply use the Fourier transformation to convert the x-derivative
into the ξ -derivative. The combination of the characteristic curve method and the
Fourier transformation reveals the particle-like and wave-like duality properties
in the Boltzmann equation.

We denote the k-th order mixture operator by

Mk ≡ S
t ∗ (KS

t ) ∗ (KS
t ) ∗ · · · ∗ (KS

t )︸ ︷︷ ︸
2k

;

and express d1 in terms of Mk :

d1 =
(

S
t + S

t ∗ KS
t + (1 + S

t ∗ K)
l∑

k=1

Mk

)
∗ K1E + Wl . (23)

The equation for Wl is




∂tWl + ξ · ∇xWl − LWl = KMl ∗ K1E ,

Wl |t=0 ≡ 0.
(24)

By the Mixture Lemma and the smoothness of K1 in ξ -variable, one has that

‖KMl ∗ K1E ‖Hl
x (L2

ξ ) = O(1)e−αl t
(
‖E ‖L2

x (L2
ξ ) + ‖∂ l

ξ (K1E )‖L2
x (L2

ξ )

)
= O(1)e−αl t‖E ‖L2

x (L2
ξ ) (25)
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for some αl > 0. Then, by Eq. (11), Eq. (19), and Eq. (25) one has that

‖Wl‖Hl
x (L2

ξ ) = O(1)‖f0‖L2
ξ (L2

ξ ). (26)

We introduce a Particle-Wave decomposition (P-W decomposition) for the solution
f of Eq. (14):




f = E + E1︸ ︷︷ ︸
particle hierarchy (particle-like component)

+ Wl︸︷︷︸
(wave-like component)

≡ P + Wl ;

E1 ≡
(

S
t + S

t ∗ KS
t + (1 + S

t ∗ K)
l∑

k=1

Ml

)
∗ K1E .

(P-W)

The particle-like component P satisfies




‖P‖L∞
x (L∞

ξ ) ≤ O(1)e−β0t‖f0‖L∞
x (L∞

ξ ) for β0 > 0,

‖P‖L2
x (L2

ξ ) ≤ O(1)e−β0t‖f0‖L2
x (L2

ξ ).
(27)

This exponential rate of decaying is due to the dissipative nature of S
t .

4.3. The Combination of Long Wave-Short Wave Decomposition

and Particle-Wave Decomposition

From

(GL + GS)f0 = f = P + Wl , (28)

Eq. (26), and Eq. (20) one has

‖P − GSf0‖Hl
x (L2

ξ ) = ‖GL f0 − Wl‖Hl
x (L2

ξ ) = O(1)‖f0‖L2
x (L2

ξ ). (29)

From Eq. (27) and Eq. (17), one has that

‖P − GSf0‖L2
x (L2

ξ ) = O(1)e−γ0t‖f0‖L2
x (L2

ξ ) (30)

for some γ0 > 0, then by Sobolev’s inequality one can conclude that

‖P − GSf0‖L∞
x (L2

ξ ) = O(1)e−γ0t‖f0‖L2
x (L2

ξ ) for some γ0 > 0. (31)
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This concludes that the short wave component G
t
Sf0 is time-asymptotically equiva-

lent to particle-like component P in the norm ‖ · ‖L∞
x (L2

ξ ); and P can be constructed
by the characteristic method and Picard’s iteration.

5. LONG WAVE STRUCTURE WITH FINITE MACH

NUMBER REGION

We only need to construct GL (x, t) in a finite Mach number region

|x | ≤ 2c(t + 1),

where c is the speed of sound defined by

c =
√

5θ

3
.

The condition |x |/(1 + t) < 2c is due to the fact that ĜL (η, t) has compact support.
One will not obtain any convergent structure as |x |/(1 + t) → ∞ from an inverse
Fourier transformation. The inverse Fourier transformation of ĜL (η, t) is

GL (x, t) =
∫

|η|<ε

eix ·η+(−iξ ·η+L)t dη for |x | ≤ 2c(t + 1). (32)

Case 1. Planar Wave
In this case x, η ∈ R and ξ ∈ R

3, one has

GL (x, t) =
∫

|η|<ε

eixη+(−iξ 1η+L)t dη for |x | ≤ 2c(t + 1). (33)

When 0 < |η| � 1, the operator −iξ 1η + L has three analytic eigenvalues σ1(η),
σ2(η), and σ3(η) of the form:


σ1(η) = (1 + A1(η2))iηc − (1 + B1(η2))B1η

2,

σ2(η) = −(1 + B2(η2))B2η
2,

σ3(η) = −(1 + A1(η2))iηc − (1 + B1(η2))B1η
2,

(34)

where A j (x) and B j (x) are all real-valued analytic functions around x = 0 and
vanish at x = 0. The constants B j are positive.

Remark 4. The analyticity of σi (η) is obtained in Ref. 3. The first completed
proof of Eq. (34) was given in Ref. 5. With this precise structure, one can carry
the inverse Fourier transformation of GL (x, t) for 1-D and 3-D.
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One takes the spectral decomposition of the operator −iξ 1η + L in
terms of its orthonormal eigenvectors ψi (η), (−iξ 1η + L)ψ j (η) = σ j (η)ψ j (η) as
follows

e(−iξ 1η+L)t =
3∑

j=1

eσ j (η)tψ j (η) ⊗ 〈ψ j (η)
∣∣+ e(−iξ 1η+L)t�⊥

η , (35)

where �⊥
η h ≡ h −∑3

j=1(ψ j (η), h)ψ j (η). Due to the spectrum gap in σ (η), one
has that

|e(−iξ 1η+L)t�⊥
η | ≤ O(1)e−t/C for some C > 0.

One can expand the other component as follows.∫
|η|≤ε

3∑
j=1

eixη+σ j (η)tψ j (η) ⊗ 〈ψ j (η)
∣∣ dη

=
∫

|η|≤ε

3∑
j=1

eixη+(iσ j (0)ηt+ σ ′′
j (0)

2 η2t)+Error j (η)tψ j (η) ⊗ 〈ψ j (η)
∣∣ dη,

where Error j (η) is an analytic function in η of order η3.
Due to the analyticities of Error j (η) and ψ j (η) around η = 0, the asymp-

totics Error j (η) = O(1)η3 for |η| � 1, and |x |/(t + 1) < 2c, one can apply the
complex contour integral method to obtain that(5):

‖GL (x, t)‖L2
ξ
≤ O(1)


e− |x+ct |2

C(t+1)

√
t + 1

+ e− |x−ct |2
C(t+1)

√
t + 1

+ e− x2

C(t+1)

√
t + 1




for |x | ≤ 2c(1 + t) for some C > 0. (36)

Remark 5. To use the complex contour integral to obtain an exponentially
sharp estimate of Green’s function was first done by Ref. 9 for the compressible
Navier-Stokes equation in 1-D.

Case 2. Waves in 3-D
The difficulty in this case primarily is due to the fact that the eigen-
functions ψ j (η) and spectrum σ j (η) are no more analytic functions in
η ∈ R

3 around η = 0. One needs to use SO(3) symmetry to resolve the
difficulty.
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The reduction procedure is given as follows. For any given non-zero η ∈ R
3,

one can have a g ∈ SO(3) so that g : η

|η| �−→ (1, 0, 0). This element g induces an

SO(3) group action on R
3 × R

3:

{
g : (x, ξ ) ∈ R

3 × R
3 �−→ (gx, gξ ) ∈ R

3 × R
3,

g : h ∈ L2
ξ �−→ gh ∈ L2

ξ defined by gh(ξ ) ≡ h(gξ ).

Under this transformation, one can show that the linear collision operator L is
invariant under g:

gLg−1 = L ,

and

g(−iη · ξ + L)g−1 = −i |η|ξ 1 + L .

This yields that (−iη · ξ + L) and −i |η|ξ 1 + L are conjugate. This concludes
that σ (η) = σ (|η|) and reduces the spectral decomposition of the operator (−iη ·
ξ + L) for η ∈ R

3 into that of the operator −i |η|ξ 1 + L , which already has been
obtained for 1-D case in Eq. (35) as follows.

e(−iξ ·η+L)t = g−1e(−iξ 1|η|+L)tg

= g−1


 5∑

j=1

eσ j (|η|)tψ j (|η|) ⊗ 〈ψ j (|η|)∣∣+ e(−iξ 1|η|+L)t�⊥
|η|


 g. (37)

Furthermore, one has the spectrum property for |η| � 1




σ1(η) = (1 + A1(|η|2))i |η|c − (1 + B1(|η|2))B1|η|2,
σ2(η) = −(1 + B2(|η|2))B2|η|2,
σ3(η) = −(1 + A1(|η|2))i |η|c − (1 + B1(|η|2))B1|η|2,
σ4(η) = −(1 + B4(|η|2))B4|η|2,
σ5(η) = σ4(η).

(38)

Here, functions A j (x) and B j (x) are all real analytic functions in x ∈ R.(6) The
functions σ1(η) and σ3(η) are not analytic functions in η ∈ R

3 due to the factor
|η|. We need special symmetries for the spectral decomposition of e(−iξ ·η+L)t to
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obtain the analyticity in η ∈ R
3. The symmetries are

Huygen Pairing Ĥ(η, t) ≡ g−1
∑

j∈{1,3}
eσ j (|η|)tψ j (|η|) ⊗ 〈ψ j (|η|)∣∣ g

−g−1
∑

j∈{1,3}
eσ j (|η|)tPm

0 ψ j (|η|) ⊗ 〈Pm
0 ψ j (|η|)∣∣ g

Contact Pairing Ĉ(η, t) ≡ g−1
(
eσ2(|η|)tψ2(|η|) ⊗ 〈ψ2(|η|)|) g

Rotational Pairing R̂n(η, t) ≡ eσ4(|η|)tg−1


�|η| −

3∑
j=1

ψ j (|η|) ⊗ 〈ψ j (|η|)∣∣

 g

+g−1
∑

j∈{1,3}
Pm

0 ψ j (|η|) ⊗ 〈Pm
0 ψ j (|η|)∣∣ g

Riesz Pairings P̂R(η, t) ≡
∑

j∈{1,3}
(eσ j (|η|)t − eσ4(|η|)t )

·g−1Pm
0 ψ j (|η|) ⊗ 〈Pm

0 ψ j (|η|)∣∣ g,

P̂R(η, t) = P̂R1(η, t) + P̂R2(η, t),

P̂R1(η, t) ≡
∑

j∈{1,3}
eσ j (|η|)tg−1Pm

0 ψ j (|η|) ⊗ 〈Pm
0 ψ j (|η|)∣∣ g

−eA2
1(|η|2)t

∑
j∈{1,3}

g−1Pm
0 ψ j (|η|) ⊗ 〈Pm

0 ψ j (|η|)∣∣ g,

P̂R2(η, t) ≡ (eB2(|η|2)t − eσ4(|η|)t )
·
∑

j∈{1,3}
g−1Pm

0 ψ j (|η|) ⊗ 〈Pm
0 ψ j (|η|)∣∣ g,

(39)
where

Pm
0 h ≡

3∑
j=1

M1/2ξ j (M1/2ξ j , h).

In the above, the transformation g is also a function ofη. Under the re-arrangements
by the above symmetries, each pairing are analytic in η ∈ R

3 around η = 0, though
some terms in the pairings are not analytic in η ∈ R

3. (The proof is very lengthy.)
Here, the Riesz pairing contains a factor η j ηl

|η|2 , which is the Riesz’s transfor-
mation in terms of Fourier variable. This symmetry arouses due to the higher space
dimension.

One can apply the complex contour integral to evaluate the inverse Fourier
transformation of the above pairings. Finally, one can conclude that there exists
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C > 0 such that for any |x | ≤ 2c(t + 1)

‖H(x, t)‖L2
ξ

=
∥∥∥∥
∫∫∫

|η|≤ε

eix ·ηĤ(η, t)dη

∥∥∥∥
L2

ξ

≤ C


e− (|x |−ct)2

Ct

(1 + t)2
+ e−t/C


 , (40a)

‖C(x, t)‖L2
ξ

=
∥∥∥∥
∫∫∫

|η|≤ε

eix ·ηĈ(η, t)dη

∥∥∥∥
L2

ξ

≤ C

[
e− |x |2

Ct

(1 + t)3/2
+ e−t/C

]
, (40b)

‖Rn(x, t)‖L2
ξ

=
∥∥∥∥
∫∫∫

|η|≤ε

eix ·ηR̂n(η, t)dη

∥∥∥∥
L2

ξ

≤ C

[
e− |x |2

Ct

(1 + t)3/2
+ e−t/C

]
,

(40c)

‖PR2(x, t)‖L2
ξ

=
∥∥∥∥
∫∫∫

|η|≤ε

eix ·ηP̂R2(η, t)dη

∥∥∥∥
L2

ξ

≤ C


e− |x |2

C(t+1)

(1 + t)
3
2

+ e−t/C


 ,

(40d)

‖PR1(x, t)‖L2
ξ

≤ C




e− (|x |−ct)2

C(t+1)

(1 + t)2
+ e−t/C for |x | ∈ [ct, 2ct],

1

t(|x | + √
t + 1)

for |x | ≤ ct.

(40e)

From Eq. (40), one has that for |x | ≤ 2c(t + 1) there exists C > 0 such that

‖GL (x, t)‖L2
ξ
≤ O(1)


e− (|x |−ct)2

C(t+1)

(1 + t)2
+ e− |x |2

C(t+1)

(1 + t)/3/2
+ e−t/C




+C




0 for |x | ∈ [ct, 2ct],

1

t(|x | + √
t + 1)

for |x | ≤ ct.
(40f)

From Eq. (27), Eq. (31), and Eq. (40f) one has that(6):

‖G
t f0(x, t)‖L2

ξ
≤ O(1)


e− (|x |−ct)2

C(t+1)

(1 + t)2
+ e− |x |2

C(t+1)

(1 + t)/3/2
+ e−t/C




+C




0 for |x | ∈ [ct, 2ct],

1

t(|x | + √
t + 1)

for |x | ≤ ct.
(40g)
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6. WAVES OUTSIDE FINITE MACH REGION

In the region |x | ≥ 2c(t + 1), the structure of Boltzmann equation is not
necessary an analogy to continuum fluid mechanics. In this region, one just needs
to use the following energy method to ensure the exponential decaying structure
of Wl (x, t) which is given in Eq. (P-W).

From Eq. (24), one has that∫
R

3
eδ(x1− 3

2 ct) (Wl, ∂tWl + ξ · ∇xWl − LWl − KMl ∗ K1E ) dx = 0

for some δ > 0. (41)

This gives

1

2

d

dt

∫
R

3
eδ(x1− 3

2 ct)(Wl , Wl )dx

+
∫

R
3

eδ(x1− 3
2 ct)
[(

Wl, δ

(
−ξ 1 + 3

2
c

)
Wl

)
− (Wl , LWl )

]
dx

−
∫

R
3

eδ(x1− 3
2 ct)(Wl , KMl ∗ K1E )dx = 0. (42)

There exist δ > 0 and C > 0 such that

0 <
δ

C
(Wl , Wl ) ≤ δ

(
Wl ,

(
−ξ 1 + 3

2
c

)
Wl

)
− (Wl, LWl). (43)

This estimate was first discovered by Ref. 12.
From Eq. (43) and Eq. (42), one can conclude that

1

2

d

dt

∫
R

3
eδ(x1− 3

2 ct)(Wl, Wl )dx + δ

2C

∫
R

3
eδ(x1− 3

2 ct)(Wl, Wl)dx

≤ 2C

δ

∫
R

3
eδ(x1− 3

2 ct)‖KMl ∗ K1E ‖2
L2

ξ

dx ≤ O(1)e−α0t for some α0 > 0.

(44)

This yields that∫
R

3
eδ(x1− 3

2 ct)(Wl, Wl)dx ≤ O(1)e−t/C0 for some C0 > 0. (45)

With this lower energy estimate, with uniformly high order estimate Eq. (26), and
with the fact that the weighted function eδ(x1−ct) can be chosen in the form eδ(x ·n−ct)

for any |n| = 1, there exists C > 0 such that

‖Wl(x, t)‖L2
ξ
≤ O(1)e−(|x |+t)/C for |x | ≥ 2c(t + 1). (46)
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It results in

‖G
t f0(x, t)‖L2

ξ
≤ O(1)e−(|x |+t)/C for |x | ≥ 2c(t + 1). (47)

Finally, there exists C > 0 satisfying the following(6):

‖G
t f0(x, t)‖L2

ξ
≤ O(1)


e− (|x |−ct)2

C(t+1)

(1 + t)2
+ e− |x |2

C(t+1)

(1 + t)3/2
+ e−(t+|x |)/C




+C




0 for |x | ≥ ct,

1

t(|x | + √
t + 1)

for |x | ≤ ct.
(48)

6.1. The Delta Functions

One rewrites Eq. (5) as follows{
∂tg + ξ · g + νg = Kg,

g(x, 0) = g0(x) ≡ δ3(x)δ3(ξ − ξ∗).

Then, expand g as a finite sum of the Picard’s iteration:

g(x, t) =
l−1∑
n=0

Jn(x, t) + Rl (x, t), (49)

where

Jn(x, t) ≡ S
t ∗ (KS

t ) ∗ · · · ∗ (KS
t )︸ ︷︷ ︸

n

g0(x).

It is clear from the characteristic carve method that


J0(x, t, ξ ) = e−ν(ξ∗)tδ3(x − ξ t)δ3(ξ − ξ∗) (delta function in x and ξ ),

J1(x, t, ξ ) =
∫ t

0
K (ξ, ξ0)e−ν(ξ )(t−s)−ν(ξ0)sδ(x − (t − s)ξ − sξ0)ds,

J2(x, t, ξ ) =
∫ t

0

∫
R

3

∫ s1

0
e−ν(ξ )(t−s1)−ν(ξ1)(s1−s)−ν(ξ0)s K (ξ, ξ1)

·K (ξ1, ξ0)δ(x − (t − s1)ξ − (s1 − s)ξ1 − sξ0)dsdξ1ds1,

‖Jn(x, t)‖L∞
ξ

≤ O(1)e−(|x |+t)/Cn for x ∈ R
3, t > 0,

n ≥ 2 for some constant Cn > 0.

(50)
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From the above properties, when n ≥ 3, the functions Jn(x, t, ξ ) are in the space
L∞

x (L∞
ξ ) with exponentially decaying structure in x and t , and the remainder term

Rl satisfies

∂t Rl + ξ · ∇xRl − LRl = (KS
t ) ∗ · · · ∗ (KS

t )︸ ︷︷ ︸
l

g0.

Thus, the functional theory in Eq. (48) can be applied to Rl(x, t) = ∫ t
0

∫
R

3 G(x −
y, t − s)KJl (y, s)dyds to result in that for some C > 0,(6):

‖Rl (x, t)‖L2
ξ
≤ O(1)


e− (|x |−ct)2

C(t+1)

(1 + t)2
+ e− |x |2

C(t+1)

(1 + t)/3/2
+ e−(t+|x |)/C




+C




0 for |x | ≥ ct,

1

t(|x | + √
t + 1)

for |x | ≤ ct.
(51)

From Eq. (50) and Eq. (51), one can obtain the pointwise behavior of the Green’s
function G(x, t, ξ, ξ∗) instead of the semi-group type functional property.

7. ON THE INITIAL BOUNDARY VALUE PROBLEMS

The solution of the initial-boundary value problem


∂th + ξ 1∂xh = Lh for x, t > 0,

h(x, 0) = h0(x),

h(0, t)|ξ 1>0 ≡ 0,

(52)

can be represented as follows

h(x, t) =
∫ ∞

0
G(x − y, t)h0(y)dy +

∫ t

0
G(x, t − σ )[ξ 1h(0, s)]ds. (53)

The only unknown variable in this representation is the boundary data h(0, σ )|ξ 1<0.
One can have various approaches to construct the boundary data h(0, t)|ξ 1<0

accurately.
We illustrate a simple example of the Green’s function approach for an initial

boundary value problem.
Suppose that the Mach number M for the Maxwellian state in L satisfies

M < −1, (54)

and y = 0 defined in the intial data h0 of Eq. (61).
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From Eq. (52) one has that (similar to Eq. (41)) for any δ ∈ R

1

2

d

dt

∫ ∞

0
eδx (h, h)dx − δ

∫ ∞

0
eδx (h, ξ 1h)dx − (h, ξ 1h)|x=0

−
∫ ∞

0
eδx (h, Lh)dx = 0. (55)

Due to the imposed boundary condition h(0, t)|ξ 1>0 = 0, the term

(h, ξ 1h)|x=0 > 0. (56)

From the condition M < −1, there exists δ > 0 such that

�
δ

2
(h, h) ≤ −δ(h, ξ 1h) − (h, Lh) for some � > 0. (57)

From Eq. (55), Eq. (56), and Eq. (57), one has the estimates that

e�δt
∫ ∞

0
eδy(h, h)dy −

∫ t

0
e�δs(h, ξ 1h)|x=0ds ≤

∫ ∞

0
eδy(h0, h0)dy. (58)

This gives the global energy estimate of the boundary data. Next, one uses the
decomposition in Eq. (49) to decompose the Green’s function G(x, t):

G(x, t) = J0(x, t) + J1(x, t) + J2(x, t) + R2(x, t).

Substitute this decomposition into the representation Eq. (53), then it yields that

h(x, t) =
∫ t

0

(
2∑

n=0

Jn(x, t − s) + R2(x, t − s)

)
ξ 1h(0, s)ds

+
∫ ∞

0
G(x, t)h0(y)dy. (59)

Then, from Eq. (58), Eq. (50), and

‖R2(x, t)‖L2
ξ
≤ O(1)


e− (x−c(M±1)t)2

C(t+1)√
(t + 1)

+ e− (x−cM t)2

C(t+1)√
(t + 1)

+ e−(|x |+t)/C




for some C > 0, one has that

‖h(x, t)‖L2
ξ
≤ O(1)e−δ(�t+x)/C for all x, t > 0 for some constant C > 0.

(60)
For a general Mach number {|M | < 1} ∩ {|M | �∈ {0, 1}}, the estimate

Eq. (57) can not hold for any choice � > 0. The energy estimate of the boundary
data h(0, t) in Eq. (58) is not valid. A procedure called upwind damping is intro-
duced to construct an accurate approximation to the boundary data.(7) Finally, one
has that
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Theorem 1. Let y be a given positive constant. Suppose that the initial data h0

in Eq. (52) satisfies


h0(x) ≡ 0 for |x − y| > 1

‖h0‖L∞
x (L∞

ξ,β ) ≤ 1, β ≥ 3/2,

‖h0(x)‖L∞
ξ,β

≡ supξ∈R
3 (1 + |ξ |)β |h0(x, ξ )|,

(61)

and M Mach number of the Maxwellian in the linearized collision L satisfying
−1 < M < 0 . Then, there exists C > 0 such that

‖h(x, t)‖L2
ξ
≤ O(1)

3∑
j=1


e− |x−y j −(M−c)t |2

C(t+1)

√
t + 1

+ e− |x−y j −(M+c)t |2
C(t+1)

√
t + 1

+ e− (x−y j −M t)2

C(t+1)

√
t + 1




+ O(1)e−(|x−y|+t)/C , (62)

where {y1, y2, y3} = {y,
(M+1)
M−1 y, M

M−1 y}.

With this estimate, the first global existence theorem of a nonlinear half space
problem with general Mach number follows in Ref. 7.
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